Le aziende neofite dei Big Data, nel frattempo, iniziano a concretizzare le prime iniziative, prevalentemente con il supporto di competenze esterne.
Tra le piccole e medie imprese, si registra un crescente interesse verso il tema e nuovi investimenti, seppur in uno scenario di complessivo ritardo dal punto di vista delle competenze.
Il tema del recruiting di figure professionali dedicate è ancora molto sentito dalle aziende".
"Storicamente, il freno principale dichiarato dalle aziende all'implementazione di progetti di Analytics è stata la mancanza di competenze e figure organizzative interne, accentuato dalle difficoltà a reperirle all'esterno", spiega Alessandro Piva, responsabile della ricerca dell'Osservatorio Big Data Analytics & Business Intelligence.
"Nel 2019, però, una grande impresa su due ha già inserito almeno un Data Scientist, le aziende che hanno già da tempo introdotto figure di questo tipo ne hanno incrementato il numero e una su tre lo ha addirittura raddoppiato.
Grazie a questi profili, oggi riescono a elaborare progetti più complessi dedicati a machine learning, dati non strutturati, analisi in tempo reali.
Chi non li ha ancora denuncia ancora difficoltà nel reperire le figure sul mercato.
Anche per questo motivo, accanto al Data Scientist, nell'ultimo anno aumenta la diffusione di altre figure legate alla manipolazione del dato, come Data Analyst, presente oggi nel 76% di aziende, il Data Engineer (51%) e il Data Visualization Expert".
Le grandi imprese sono più avanti
Gli Analytics sono ormai un ambito conosciuto e prioritario per le grandi aziende.
Il 93% sta investendo in Analytics, soprattutto in progetti di analisi dei dati (circa l'80%, di cui più della metà in iniziative di Advanced Analytics), in infrastrutture per aumentare il livello di integrazione dei dati (62%) e in azioni per migliorarne la qualità (54%).
Segue l'inserimento in organico di nuove competenze (47%), stabile sia tra le aziende che non hanno al momento risorse dedicate sia tra coloro che ne hanno già sperimentato l'impatto e sono intenzionate ad aumentarne la numerosità.
Di minor interesse, invece, la formazione di base sull'analisi dei dati (27%), la creazione di una struttura organizzativa dedicata (24%) e gli investimenti tecnologici per migliorare la fruizione dei dati per una platea più ampia (22%).
L'analisi dell'Osservatorio sul percorso di ideazione, sviluppo e implementazione dei progetti di Advanced Analytics nel triennio 2017-2019 mostra come sia in aumento il numero di proof of concept: tra le aziende che hanno portato avanti almeno una sperimentazione, il 90% ha realizzato almeno un progetto nel 2019, contro il 64% del 2017, e in media quest'anno ogni azienda ha sviluppato più di tre proof of concept (uno a testa due anni fa).
I progressi sono evidenti anche nei progetti attivati, con una riduzione di oltre la metà della probabilità di fallimento dei proof of concept (dal 65% del 2017 al 31% del 2019), anche se in media negli ultimi tre anni solo tre progetti su dieci sono passati a regime.
A che punto sono le PMI
L'analisi dei dati è un ambito di grande interesse anche per le PMI, che nel 62% dei casi hanno fatto investimenti nel 2019, concentrati soprattutto nell'integrazione dei dati interni (80%), nella formazione di base sull'analisi dei dati per risorse già presenti in azienda (66%), nell'integrazione di dati da fonti esterne (57%) e nello sviluppo di progetti di analisi predittiva (quattro su dieci, +10%).
Gli obiettivi principali degli investimenti sono l'ottimizzazione della supply chain, in particolare in ambito manifatturiero, l'analisi dell'ambiente competitivo e la necessità di aumentare l'efficacia delle campagne di marketing.
Tra le aziende che hanno portato avanti progetti di questo tipo, i risultati sono percepiti altamente innovativi nel 29% dei casi.
Il 40% del campione ha sviluppato progetti di analisi avanzati, almeno predittivi, per lo più affidandosi a competenze esterne.
Il 18% mostra una buona maturità nello sviluppo di analisi descrittive e nell'integrazione dei dati interni e sta lavorando anche sull'integrazione di dati esterni, oltre a mostrare interesse per la formazione dei dipendenti (sei su dieci hanno attivato piani di formazione sull'analisi dei dati).
Il 4% si sta concentrando soltanto sugli investimenti per l'integrazione dei dati interni, mentre il 38% non ha avviato nessuna iniziativa o investimento e non percepisce i vantaggi dei progetti di Analytics.
Se si sposta l'analisi sulle competenze, si allarga la distanza dalle grandi imprese: soltanto il 16% delle PMI ha al suo interno almeno un Data Scientist e poco più di una su cinque (23%) almeno un Data Analyst.
Non molto distanti i numeri delle sole medie imprese, in cui il Data Analyst è presente in un'azienda su tre.
Nelle aziende che hanno assunto profili di Data Science i risultati dei progetti vengono percepiti come molto innovativi nel 40% dei casi, contro il 21% delle imprese che utilizzano solo collaboratori esterni.
Se l'articolo ti è piaciuto, condividilo con gli amici e colleghi